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1.0 Introduction

When the modal bandwidth, determined by the damping, is on the order of three
times the modal spacing, individual modes to not make significant contributions to the
response of the shell as a function of frequency. Since damping changes slowly with
frequency, whereas the modal spacing‘decreases with frequency, it is at the higher
frequencies where modal overlap will be strong. The response of the shell to broadband,
localized and/or transient excitation will then depend more on the modal density than on
the locations of individual frequencies of resonance. However, estimation of modal
density must rely on the estimation of the locations of the frequencies of resonance.

For prolate spheroidal shells, closed-form solutions for the resonant response are
not available. Therefore, it is necessary to rely on either numerical methods or
approximate analytical methods to obtain estimates of the frequencies of resonance for
prolate spheroidal shells. Unfortunately, the computational effort for both numerical and
approximate analytical methods increases with mode number, making it more difficult to
obtain estimates of frequencies of resonance for the higher-order modes. However,
because the importance of the exact locations of frequencies of resonance decreases with
increasing mode number, the focus can be shifted from the location of the frequencies of
resonance to obtaining estimates of modal density that are accurate where the modal
overlap is high. |

The objective of this report is to develop simple expressions for the modal density
of prolate spheroidal shells applicable at frequencies above where modal overlap renders
the need to identify locations of individual modes unnecessary. The effo;t presented here

is limited to axisymmetric modes which present the greatest challenge. Axisymmetric



modes involve the zeroth-order circumferential modal response where the effects of

* curvature are strongest-‘because of the ring in-plane stresses. Non-axisymmetric modes
will be influenced less by curvature which should simplify the development of simple
éxpressions for modal density. Thus, if we can obtain good estimates of the modal
density for higher-order axisymmetric modes, it is likely that we can also obtain good
estimates for the modal densities for all higher-order modes for a closed prolate
spheroidal shell.

We base the effort to develop estimate for modal density on estimates of the
frequencies of resonance of closed in-vacuo prolate spheroidal shells of constant
thickness. Because the estimates of modal density will be based on the frequencies of
resonance, we will retain the effects of material and geometric properties in the

estimation of modal density.




2.0 Model for Frequencies of Resonance of Prolate Spheroidal Shell
The equations of motion for the axisymmetric nontorsional response of prolate

spheroidal shells are given by [1]
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E is Young’s modulus, o is the material density and v is Poisson’ ratio. The
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in the meridian (&) direction and a, is half the interfocal distance, f, is the rotational of

an element relative to the normal to the middle surface in the & -direction and

w= ———w— where w' is the displacement normal to the middle surface of the shell.
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These displacements are illustrated in Figure 1.




Figure 1. Nontorsional displacements for axisymmetric motion of a closed prolate
spheroidal shell




Galerkin’s variational method is applied to obtain approximate solutions to the
above shell equations. Basically, Galerkin’s method involves the approximation of the
solution with a series of functions that form a complete set and satisfy the boundary
conditions exactly. The expansion coefficients are then selected to approximate the
differential equations, knowing that the boundary conditions will be satisfied exactly.
For axisymmetric motion of a closed shell, the boundary conditions are

ow

= 2525 = /39 =0 at @= (),7[

llB
The solutions can then be expressed as
N .
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Substituting these approximate solutions into the governing differential equations for the

shell, operating on the first and third equation with Tsin(n'ﬁ)d@ and the second equation
0
with }cos(n'B) , and using the orthogonality conditions yields
0

sinhb3C, A, +coshb¥ C, A, +T¥C, A, =0
n=0 n=0 n=0

coshb3C, A, +sinhb3C, A,, +3C, A,, =0
n=0 n=0 n=0

N N coshb
TZCMA'MI: +ZC2nA8nk + _T_—ZCBnA%:k =0
n=0 n=0 sinh b

where A,, are defined in Appendix of ref. 1.

In order to obtain a nontrivial solution for the expansion coefficients, C, , the

determinant of the matrix formed by A,, must vanish, i.e. |A| =0. The values of ©2* for




which |A| = 0 then define the frequencies of resonance. To obtain estimates for the

frequencies of resonance for higher-order modes, larger numbers of terms must be
included in the summation. As the number of terms in the solutions increases, the

approximate solution approaches the exact solution from above.




3.0 Estimates of Frequencies of Resonances

Estimates of the frequencies of resonance were obtained for the nontorsional,
axisymmetric modes for the in-vacuo, closed prolate spheroidal shells with the geometric
properties given in Table 1.

The convergence of the estimates for the square of the nondimensional
frequencies of resonance are shown in Table 2 for Case 1a as a function of the number of
terms used in the approximate solution. The solution for the n=1 mode converged to the
third decimal place for the number of terms in the solution between 5 and 10. For the
n=20 mode, 90 terms were needed to obtain accuracy to the third decimal place. With 90
terms in the solution, the n=25 mode converged only to the first decimal place.

With 90 terms in the solution, the size of the matrix is 270 by 270, showing the
need for a more computationally efficient method of estimating modal density for
axisymmetric modes with mode numbers greater than n=20.

Using 90 terms in the solution, the square of the nondimensional frequencies of
resonance are given in Tables 3, 4 and 5 for Cases 1, 2 and 3 shown in Table 1.
Frequencies of resonance obtained from the values in Tables 3, 4 and 5 will be used
below to obtain approximations to modal densities applicable to higher-order modes, i.e.

for modes with mode number greater than approximately 10.




Table 1. Geometric Parameters used in Estimating Frequencies of Resonance.

Case

Interfocal

Distance (inches)

Minor axis
(inches)

Major axis
(inches)

Thickness
(inches)

w B
Mmoo o Fgmo o o wmo o oF

328

«
13
2
L)
2”9

187
«
»
»
”

2

628

297.5

(14

287.8

[13
”
”»
”

442.8

«
»
»
b4
2
321.6
.
»
»
»

»
690.8
«

»

»

"

2

0.25
0.50
0.75
1.00
1.25
1.50
0.25
0.50
0.75
1.00
1.25
1.50
0.25
0.50
0.75
1.00
1.25
1.50




Table 2a. Convergence of Frequencies of Resonance for Case 1a Shell for 1 to 14 Mode Number

>

N

Mode Number

7 8

10

11

12

13

14

0.517

0.847

1.176

1.440

10

0.516

0.827

0.919

1.037

15

0.826

0.902

0.941

20

0.826

0.896

0.924

0.958

25

0.895

0.915

0.940

0.967

30

0.895

0.912

0.927

0.950

0.980

35

0.911

0.923

0.938

0.964 | 0.989

40

0.911

0.921

0.934

0.951 | 0.975

1.003

45

0.921

0.932

0.947 | 0.963

0.990

1.016

50

0.932

0.945 { 0.960

0.980

1.004

1.032 | 1.072

55

0.931

0.945 | 0.959

0.978

0.997

1.023 | 1.050

1.089

1.128

60

1.018

1.044 | 1.072

1.111

1.206

65

1.017

1.041

1.068

1.099

1.135

70

1.041

1.067

1.097

1.128

75

1.096

1.128

80

90

Table 2b. Convergence of Frequencies of Resonance for Case 1a Shell for 15 to 25 Mode Number

*

N

Mode Number

15

16

17

18

19 20

21

22

23

24

25

5

10

15

20

25

30

35

20

45

50

55

60

1.206

1.256

1.338

65

1.135

1.175

1.227

1.335

1.424

70

1.128

1.167

1.206

1.259

1.309 1.383

75

1.126

1.164

1.201

1.245

1.294 1.348

80

1.164

1.201

1.244

1.288 1.339

1.392

1.458

1.523

1.611

1.687

90

1.287 1.337

1.384

1.438

1.495

1.550

1.603

* Number of terms in approximate solutions

10




Table 3. Frequencies of Resonance for Case 1 Prolate Spheroidal Shell — Interfocal Distance = 328
inches and Thickness — a) 0.25, b) 0.50, c) 0.75, d) 1.00, ) 1.25 and f) 1.50 inches

1 10.516 0.516 0.516 0516 | 0.516
2 0.826 0.826 0.826 -0.826 0.826
3 0.896 0.897 0.898 0.899 | 0.901
I 0911 | 0916 | 0920 | 094 | 0929 | 093
5 0.921 0.932 0.942 0.952 0962 | 0971
6 0.931 0.949 0.966 0.981 0.996 1.010
7 0.945 0.972 0.995 1.017 1.037 1057 |
8 0.959 0.995 1.027 1.057 1.085 112 |
“ 9 0.977 1.203 1.064 1.102 1.138 1248 |
10 0.994 1.055 1.107 1.156 1.203 1.425
'F 11 1.017 1.089 1.153 1.214 1.272 1.528
12 1.041 1.130 1.209 1.284 1355 | 1.648
13 1.076 1.172 1.267 1.357 1.444 1.743
14 1.096 1.223 1.337 1.444 1.547 1.920
15 1.127 1.275 1.409 1.536 1.65 | 2.079
l} 16 1.164 1.337 1.493 1.641 1755 | 2.248
17 1.201 1.400 1.581 1.736 1920 | 2437
l} 18 1.244 1473 | 1.680 1.875 2064 | 2.640
| 1 1.287 1.548 1.746 2.010 2225 | 2.866
20 1.336 1.632 1.899 2.152 2397 | 3.107
“ 21 1.384 1.715 2.023 2.309 2580 | 3.375
| = 438 | 1759 | 2154 | 2475 | 2791 | 3659
23 1.495 1.817 2.297 2.659 3.107 | 3.969
2% 1.550 1.921 2.448 2.853 3.150 | 4.301
25 1603 | 2.029 2.613 3.067 3256 | 4.655
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Table 4. Frequencies of Resonance for Case 2 Prolate Spheroidal Shell — Interfocal Distance = 187
inches and Thickness — a) 0.25, b) 0.50, ¢) 0.75, d) 1.00, €) 1.25 and f) 1.50 inches.

Mode Case a) Case b) Case é) Case d) Case e) Case f)
No.
1 0.533 -0.533 0.533 0.533 0.533 0.533
2 0.787 0783 | 0.783 0.783 | 0.783 0.784
3 0.871 0.871 0.872 0.874 0.875 0.876
4 0.900 0.904 0.908 . 0.913 0.918 - 0.923
5 0.916 0.927 0.937 0.947 0.958 0.968
6 0.929 0.948 0.967 0.984 1.001 1.018
7 0.943 0.972 0.998 1.024 1.050 1.074
8 0.961 1.001 .1.037 1.071 1.105 1.137
9 0.979 1.034 1.083 1.129 1.173 1.217
10 1.002 1.069 1.131 1.189 1.245 1.300
11 1.027 1.112 1.188 1.259 1.325 1.390
12 1.053 1.157 1.249 1.335 1.416 1.497
13 1.085 1.208 1.314 1.413 1.512 1.614
14 1.117 1.263 1.389 1.508 1.627 1.751
15 1.155 1.320 1.465 1.611 1.761 1.918
16 1.194 1.386 1.556 1.728 1.905 2.091
17 1.236 1.452 1.656 1.866 2.080 2.302
18 1.282 1.530 . 1.765 2.007 2.257 2.519
19 1.329 1.614 1.894 2.178 2.463 2.755
20 1.383 1.705 2.022 2.348 2.680 3.028
21 1.435 1.810 2.176 2.538 2.897 3.270
22 1.497 1.915 2.327 -2.744 3.168 3.620
23 1.560 2.041 2.496 2.939 3.400 3.916
24 1.630 2.161 2.676 3.192 3.732 4.335
25 1.707 2.847 3.403 4.025 4.728

2.302

12




Table 5 Frequencies of Resonance for Case 3Prolate Spheroidal Shell — Interfocal Distance = 628
inches and Thickness — a) 0.25, b) 0.50, c) 0.75, d) 1.00, €) 1.25 and £) 1.50 inches.

Mode Case a) Case b) Case c) Case d) Case ¢) Case f)
No.
1 0384 | 0.384 0.384 0.384 0.384 0.384
2 0.809 0.809 0.809 0.809 | - 0.809 0.809
3 0.854 | 0.854 0.854 0.854 0.854 0.854
4 0.910 0.912 0.913 0.915 0.917 0.920
5 0.916 0.920 0.926 0.931 0.937 0.943
6 0.921 0.930 0.937 0.944 0.951 0.958
7 0.928 0.944 0.959 0.974 0.990 1.006
8 0.935 0.953 0.968 0.982 0.996 1.009
9 0.946 0.982 1.005 | 1.032 1.055 1.076
10 0.952 0.982 1.008 1.035 1.066 1.160
11 0.968 1.019 1.058 1.094 1.128 1.236
12 0.972 1.020 1.068 1.121 1.178 1.263
13 0.998 1.065 1.119 1.170 1.218 1.390
14 1.002 1.075 1.193 1.239 1320 | 1.448
15 1.030 1.120 1.200 1.262 1.436 1.541
16 1.040 1.145 1.280 1.371 1.458 1.595
17 1.070 1.176 1.382 1.443 1.495 1.720
18 1.100 1.230 1.440 1.500 1.612 1.815
19 1150 | 1240 | 1490 | 1.541 1.677 1.920
20 1.200 1.320 1.520 1.650 | 1.791 2.072
21 1.250 1.430 1.600 1.718 1.895 2.164
2 11.350 1.460 1.660 1.822 1.996 2.354
23 1.400 1.580 1.730 1.987 2.147 2.460
24 1.500 1.620 1.800 2.100 2.365 2.716
25 1.550 1.720 1.950 2.250 2.510 2.760

13




4.0 Estimation of Modal Density
The approach to the estimation of modal density is to ‘unwrap’ each half of the

prolate spheroidal shell into two flat circular plates with a radii equal to the chord length
(L) from the apex (8 = 0or 7 ) to the middle of the shell (§ =z/2), as shown in

Figure 2. The spreading in the circumferential (@) direction should not affect the
bending wavenumber in the meridian (&) direction so that the resonant wavenumber for
the shell before and after unwrapping should be the same when the curvature in the

@ -direction is not a factor. Once the wavenumber of resonance in the & -direction is

modeled, then effects of the axisymmetric, zero wavenumber in the @ -direction must be
included. This effect can not be ignored in the plate model where the in-plane stresses
decouple from the radial displacements in the plate.

There are two types of axisymmetric modes in the shell; those which are
symmetric about the middle of the shell, i.e. even in the 8 -direction about 8 =z /2, and
those which are nonsymmetric about @ =z /2, i.e. odd in the @ -direction. For the
symmetric modes, the slope and the shear in the middle of the shell are zero. Thus for the

unwrapped plate the boundary conditions for the even modes are

@_a’w

69—603 =0 atr=1L

For the symmetric modes, the displacement and moment are zero in the middle of the

shell. Thus for the unwrapped plate the boundary conditions for the odd modes are

0w

w= =0 atr=1L
06?

where » = L is the radius of the plate.

14




0=m/2

Figure 2. Meridian Arc Length for the Prolate Spheroidal Shell.
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The radius of the unwrapped plate is the arc length of the shell from the apex
located at x =a,y = 0 to the middle of the shell, given by x =0,y = b, as shown in

Figure 3. The arc length is then given by

[T

where y = b for the meridian arc length on the shell for ¢=constant. For

X
172
a (az __xz)

the prolate spheroidal shell with a major axis = 2a and minor axis = 2b, the arc length is

1—k2 2 1/2 -
L= 24 dy=aE(——,k)
1-y? 2

z . e , a'-b’
where E E,k is the elliptic integral and k* = .

aZ

The solution for the axisymmetric displacement of a circular plate is
w(r)= AJ,(kr)+ BI, (kr)
where J, is the Bessel function of the first kind of zero order, 7, is the modified Bessel
function of the first kind of zero order, and & is the bending wavenumber. Applying the

boundary condtions for the symmetric modes leads to J,(kL)= 0 as the solution for the

nondimensional frequency,

(ay -2z 222

where f is the frequency in Hz. Applying the boundary conditions for the

nonsymmetric modes leads to [2]

16
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Figure 3. Half of Major and Minor Axis for Prolate Spheroidal Shell
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Jo(kL) 1(kL)  2kL
J, kL) 1,(kL) 1-v

For large kL (i.e. above = 5), this becomes J, (kL) ~0.

The frequencies of resonance for the unwrapped shell were then obtained by
alternating between symmetric and nonsymmetric modes. The frequencies of resonance
for the plate are compared to the frequencies of resonance for the shell for Case la in
Figure 4. The ring stresses in the shell keep the frequencies of resonance for the shell far
above the frequencies of resonance for the plate. The differences between the plate and
shell frequencies of resonance are much greater for the lower-order modes where
coupling between the in-plane and transverse displacements along the meridian of the
shell are greatest. For the higher-order modes, this coupling decreases so that only the in-
plane stresses around the circumference of the shell (i.e. the ring stresses) are holding the
frequencies of resonance for the shell above the frequencies of resonance for the plate.
Thus, we need to include the effects of the ring in-plane stresses, which will be the same
for all modes in the meridian (&) direction.

The frequency of resonance for a ring of radius R is 3]

Qo1 p(l_vz)szz
o E

Since the influence of the ring stresses in a prolate spheroidal shell are maximum in the
middle and decrease to nearly zero at the apex, and the radius decreases from R =b at
the middle of the shell to zero at the apex, we can approximate the effect of the ring
stresses in the shell by using an effective radius for the shell by integrating over the arc

length of the shell and including the orientation of the ring stresses. This leads to

18




Frequencies of Resonance - Hz

Frequencies of Resonance

10" ——— . . T .
Case 1a 5
10° |
10° 3
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—— Bending Waves in Plate
—x— Longitudinal Waves in Plate
0 —o— Bending Waves in Prolate Spheriodal Shell
107 —a- Long Waves in Prolate Spheroidal Shell E
-o— Circumferential Ring Mode
I
10‘1 | 1 ] |
0 5 10 15 20

Mode Number

Figure 4. Frequency of Resonance for Case 1a Prolate Spheroidal Shell and
And Corresponding Unwrapped Plate.
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where cosd = ( Y . Performing the integration yields

x +y2)1/2

R4 b? ln[( 2 —bz)”2 +a:J

=272 -p) b

This equation is used in the equation for the frequency of resonance for the
circumferential ring mode. This ring frequency of resonance is compared to the
frequencies of resonance for the bending waves in the prolate spheroidal shell in Figure
4. The fact that the frequency of resonance for the circumferential ring mode is close to
the frequencies of resonance for the bending waves in the shell implies that the
frequencies of resonance for the shell are controlled by the axisymmetric ring mode in the
circumferential direction.

In addition to the above comparisons, Figure 4 also shows comparisons between
the frequencies of resonance for in-plane modes in the shell to the in-plane modes in the

plate. For the plate, the frequencies of resonance for the symmetric modes (where

uy =0 atr = L) and nonsymmetric modes (where %u_; atr = L) are given by

- o 2 E .
J,(k,L)=0 and J, (k,L)= 0, respectively, where k, =— and ¢ = m The in-

!

plane frequencies of resonance for the plate and shell are in close agreement indicating
that the shell in-plane axisymmetric modes can be approximated with the much simpler

model of the plate. Thus, we will concentrate in the following on the bending modes to

20




obtain an approximation for the modal density for the axisymmetric bending waves in the
shell.

A quadratic fit to the bending wave frequencies of resonance for the Case 1a
prolate spheroidal shell is shown in Figure 5. This fit is then used to extrapolate the
frequencies of resonance out to the n=50 bending wave mode number. These
extrapolated frequencies of resonance are compared to the frequencies of resonance for
the unwrapped plate and the circumferential ring mode frequency of resonance in Figure
6. At the higher mode numbers, the influence of bending‘ along the meridian (8)
direction becomes apparent. For Case 1a, which is the thinnest of the Case 1 shells
(£ =0.25 inches), the influence of the ring mode in the circumferential direction and the
bending modes in the unwrapped plate (i.e in the shell without the effects of curvature)
on the frequencies of resonance for the bending waves in the shell appear to be nearly
equal near the n=50 mode.

The same approach was applied to Cases 1b through 1f with the results shown in
Figures 7 through 21. As the thickness of the shell increases, the influence of the bending
waves in the meridian direction increase to the point where the unwrapped plate provides
an increasingly accurate approximation for the frequencies of resonance for the shell.

Results for the other two shells (Cases 2 and 3) are shown in Figures 23 through
57. For both of these shells, the trends in the ﬁ‘equen;:ies of resonance are similar to the
frequencies of resonance for the Case 1 shell. The influence of the bending waves in the
resonance for the plate provide a i;;tter fit to the frequencies of resonance for the shell at

the higher-order modes for the Case 2 and 3 shells than for the Case 1 shell. For the Case
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3 shell, the frequencies of resonance exceed the frequencies of resonance for the plate.
This may be because the Case 3 shell has the largest interfocal distance of the three

shells, and has the longest and thinnest profile.
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Figure 5. Quadratic Curve Fit to Bending Wave Frequencies of Resonance for
Case 1a Prolate Spheroidal Shell
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Figure 6. Extrapolation of Frequencies of Resonance for Case 1a Shell and Plate

to Mode Number, n=50.
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Figure 7. Frequency of Resonance for Case 1b Prolate Spheroidal Shell and
And Corresponding Unwrapped Plate.
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Figure 8. Quadratic Curve Fit to Bending Wave Frequencies of Resonance for
Case 1b Prolate Spheroidal Shell
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Figure 10. Frequency of Resonance for Case 1c Prolate Spheroidal Shell and
And Corresponding Unwrapped Plate.
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Figure 11. Quadratic Curve Fit to Bending Wave Frequencies of Resonance for
Case 1c Prolate Spheroidal Shell
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Figure 12. Extrapolation of Frequencies of Resonance for Case 1c¢ Shell and Plate

to Mode Number, n=50.
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Figure 13. Frequency of Resonance for Case 1d Prolate Spheroidal Shell and
And Corresponding Unwrapped Plate.
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Figure 14. Quadratic Curve Fit to Bending Wave Frequencies of Resonance for
Case 1d Prolate Spheroidal Shell
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Figure 16. Frequency of Resonance for Case 1e Prolate Spheroidal Shell and
And Corresponding Unwrapped Plate.
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Figure 18. Extrapolation of Frequencies of Resonance for Case 1e Shell and Plate

to Mode Number, n=50.
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Figure 19. Frequency of Resonance for Case 1f Prolate Spheroidal Shell and
And Corresponding Unwrapped Plate.
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Figure 20. Quadratic Curve Fit to Bending Wave Frequencies of Resonance for
Case 1f Prolate Spheroidal Shell
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Figure 21. Extrapolation of Frequencies of Resonance for Case 1f Shell and Plate

to Mode Number, n=50
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Figure 22. Frequency of Resonance for Case 2a Prolate Spheroidal Shell and
And Corresponding Unwrapped Plate.
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Figure 23. Quadratic Curve Fit to Bending Wave Frequencies of Resonance for
Case 2a Prolate Spheroidal Shell
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Figure 24. Extrapolation of Frequencies of Resonance for Case 2a Shell and Plate
to Mode Number, n=50
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Figure 25. Frequency of Resonance for Case 2b Prolate Spheroidal Shell and
And Corresponding Unwrapped Plate.
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Figure 27. Extrapolation of Frequencies of Resonance for Case 2b Shell and Plate

to Mode Number, n=50
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Figure 28. Frequency of Resonance for Case 2¢ Prolate Spheroidal Shell and
And Corresponding Unwrapped Plate.
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Figure 29. Quadratic Curve Fit to Bending Wave Frequencies of Resonance for
Case 2c Prolate Spheroidal Shell
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Frequencies of Resonance - Extended out to n=50
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Figure 30. Extrapolation of Frequencies of Resonance for Case 2c Shell and Plate
to Mode Number, n=50
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Figure 31. Frequency of Resonance for Case 2d Prolate Spheroidal Shell and
And Corresponding Unwrapped Plate.
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Figure 33. Extrapolation of Frequencies of Resonance for Case 2d Shell and Plate

to Mode Number, n=50
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Figure 34. Frequency of Resonance for Case 2¢ Prolate Spheroidal Shell and
And Corresponding Unwrapped Plate.
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Figure 36. Extrapolation of Frequencies of Resonance for Case 2e Shell and Plate
to Mode Number, n=50
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Figure 37. Frequency of Resonance for Case 2f Prolate Spheroidal Shell and
And Corresponding Unwrapped Plate.
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Figure 38. Quadratic Curve Fit to Bending Wave Frequencies of Resonance for
Case 2f Prolate Spheroidal Shell
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Figure 39. Extrapolation of Frequencies of Resonance for Case 2f Shell and Plate
to Mode Number, n=50
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Figure 40. Frequency of Resonance for Case 3a Prolate Spheroidal Shell and

And Corresponding Unwrapped Plate.
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Figure 41. Quadratic Curve Fit to Bending Wave Frequencies of Resonance for
Case 3a Prolate Spheroidal Shell
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Figure 42. Extrapolation of Frequencies of Resonance for Case 3a Shell and Plate
to Mode Number, n=50
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Figure 43. Frequency of Resonance for Case 3b Prolate Spheroidal Shell and
And Corresponding Unwrapped Plate.
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Figure 45. Extrapolation of Frequencies of Resonance for Case 3b Shell and Plate
to Mode Number, n=50
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Figure 46. Frequency of Resonance for Case 3¢ Prolate Spheroidal Shell and
And Corresponding Unwrapped Plate.
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Figure 47. Quadratic Curve Fit to Bending Wave Frequencies of Resonance for
Case 3c Prolate Spheroidal Shell
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Figure 48. Extrapolation of Frequencies of Resonance for Case 3¢ Shell and Plate
to Mode Number, n=50
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Figure 49. Frequency of Resonance for Case 3d Prolate Spheroidal Shell and
And Corresponding Unwrapped Plate.
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Figure 50. Quadratic Curve Fit to Bending Wave Frequencies of Resonance for

Case 3d Prolate Spheroidal Shell
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Frequencies of Resonance - Hz

Frequencies of Resonance - Extended out to n=50
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Figure 51. Extrapolation of Frequencies of Resonance for Case 3d Shell and Plate
to Mode Number, n=50
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Figure 52. Frequency of Resonance for Case 3e Prolate Spheroidal Shell and
And Corresponding Unwrapped Plate.
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Curve Fit to Frequencies of Resonance for Shell
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Figure 53. Quadratic Curve Fit to Bending Wave Frequencies of Resonance for
Case 3e Prolate Spheroidal Shell
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Frequencies of Resonance - Hz

Frequencies of Resonance - Extended out to n=50
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Figure 54. Extrapolation of Frequencies of Resonance for Case 3e Shell and Plate
to Mode Number, n=50
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Figure 55. Frequency of Resonance for Case 3f Prolate Spheroidal Shell and
And Corresponding Unwrapped Plate.
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Figure 56. Quadratic Curve Fit to Bending Wave Frequencies of Resonance for
Case 3f Prolate Spheroidal Shell
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Frequencies of Resonance - Hz

Frequencies of Resonance - Extended out to n=50
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Figure 57. Extrapolation of Frequencies of Resonance for Case 3f Shell and Plate

to Mode Number, n=50
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5.0 Conclusions

As the mode number increases, the unwrapped plate with a radius equal to the
meridian arc length from the apex to the middle of the prolate spheroidal shell provides
an increasingly accurate approximation to the frequencies of resonance for the
axisymmetric modes of the shell. Thg ring in-plane circumferential stresses provide a
lower bound to the frequencies of resonance for the shell. Thus, the modal density for
axisymmetric bending waves in the shell can be approximated with the plate model after
the frequencies are shifted up to around the frequency for the ring mode.

For the circular plate, the mode spacing for the higher-order modes can be

approximated using asymptotic expressions for the Bessel functions, i.e.

Jo(kr)—> (%)”2 cos(kr . %) and Jy (k) > (;2(;)”2 cos(kr z. %) |

Thus, the frequency spacing between modes in a circular plate may be approximated by

4k =~ 21 so that the mode count can be approximated as
a

1/2 1/4
N(w)=_l_c_=2kl,___2w , L(p_k)
Ak b4 /4 D

3

Eh .
where D = 7—) is the bending rigidity. The modal density is then
12(1-v?

n(a;)= N@) _12"4L {p(l—vz):IIM

ow z ER?

This approximation for the modal density is applicable to the shell only at frequencies

above the ring frequency of resonance given by @, = EE}Q_ where
b1

e
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R =_‘_1_+ b? mln (az—~b2)”2+a
4 4(a2—b2)

with a and b equal to the major and minor axes for the prolate spheroidal shell. Thus,
the proposed approximation for the axisymmetric modes of in-vacuo closed prolate

spheroidal shells of constant thickness is

L1/2
n(a))= W for o > @,

and
n(a))= 0 for w < w,

For n =1 circumferential modes, thein-plane stresses are small so that the
derivation of an approximate expression for the modal density should be simpler to
obtain than for the #n = 0 modes. Also, for higher-order circumferential modes, i.e. above
the n =1 mode, the effects of curvature in the circumferential direction should be less
than for the axisymmetric modes, again making it easier to obtain good approximations

for modal densities for bending wave modes in prolate spheroidal shells.
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